Probability of Dependent Events

The head of maths is organising a school trip. Two students need are chosen at random to be group leaders. There are 6 girls and 5 boys to choose from.

1) Complete the probability tree diagram.
2) Calculate the probability that the head of maths selects both a boy and a girl.

Abbie has 20 biscuits in a tin. She has
12 digestives
5 chocolate chip cookies
3 Oreos
Abbie takes at random two biscuits from the tin.
3) Work out the probability that the two biscuits were not the same type.
4) Below are the 9 tiles, Fawaz takes a tile at random and he does not replace the tile. Fawaz then takes a second random tile.
\square 3
4
5
3
4 3 5 4

Calculate the probability that the number on Fawaz's second tile is LESS than the number on the first tile he took.
5) There are n smarties in a tube. 4 of the smarties are blue. The rest are pink. Lina takes at random a sweet from the bag and eats it. She then takes a second sweet out of the bag and eats it.
The probability Lina eats two blue sweets is $\frac{2}{5}$

Show that

$$
2 n^{2}-2 n-60=0
$$

Skill	Questions	Score	Available Marks
Completing a probability tree diagram for dependent events.	1		$\mathbf{2}$
Calculate the probability of dependent events.	$2,3,4$		$\mathbf{1 0}$
Problem solving and reasoning with dependent events.	5		$\mathbf{3}$
	Total Marks		$\mathbf{1 5}$

Answers

Probability of Dependent Events

The head of maths is organising a school trip. Two students need are chosen at random to be group leaders. There are 6 girls and 5 boys to choose from.

1) Complete the probability tree diagram.
2) Calculate the probability that the head of maths selects both a boy and a girl. $P(G B)=\frac{6}{11} \times \frac{5}{10}=\frac{30}{110}$
$P(B G)=\frac{5}{11} \times \frac{6}{10}=\frac{30}{110}$

$$
P(B \cap G)=\frac{30}{110}+\frac{30}{110}=\frac{60}{110}=\frac{6}{11}
$$

Abbie has 20 biscuits in a tin. She has 12 digestives, 5 chocolate chip cookies and 3 Oreos. Abbe takes at random two biscuits from the tin.
3) Work out the probability that the two biscuits were not the same type.

$$
\begin{gathered}
P(D D)=\frac{12}{20} \times \frac{11}{19}=\frac{132}{380} \\
P(C C)=\frac{5}{20} \times \frac{4}{19}=\frac{20}{380} \\
P(O O)=\frac{3}{20} \times \frac{2}{19}=\frac{6}{380} \\
P(\text { same })=P(D D)+P(C C)+P(O O) \\
P(\text { same })=\frac{132}{380}+\frac{20}{380}+\frac{6}{380}=\frac{158}{380} \\
P(\text { not same })=1-P(\text { same }) \\
P(\text { not same })=1-\frac{158}{380}=\frac{222}{380}=\frac{111}{190}
\end{gathered}
$$

Answers

4) Below are the 9 tiles, Fawaz takes a tile at random and he does not replace the tile. Fawaz then takes a second random tile.

| 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Calculate the probability that the number on Fawaz's second tile is LESS than the number on the first tile he took.

$$
\begin{aligned}
& p(5,4)=\frac{2}{9} \times \frac{3}{8}=\frac{6}{72} \\
& P(5,3)=\frac{2}{9} \times \frac{4}{8}=\frac{8}{72} \\
& P(4,3)=\frac{3}{9} \times \frac{4}{8}=\frac{12}{72}
\end{aligned}
$$

$P($ less than first tile $)=P(5,4)+P(5,3)+P(4,3)$
$P(a>b)=\frac{6}{72}+\frac{8}{72}+\frac{12}{72}=\frac{26}{72}=\frac{13}{36}$
5) There are n smarties in a tube. 4 of the smarties are blue. The rest are pink. Lina takes at random a sweet from the bag and eats it. She then takes a second sweet out of the bag and eats it.
The probability Lina eats two blue sweets is $\frac{2}{5}$

Show that

$$
2 n^{2}-2 n-60=0
$$

$$
P(B B)=\frac{4}{n} \times \frac{3}{n-1}=\frac{12}{n^{2}-n}
$$

Hence

$$
\begin{gathered}
\frac{12}{n^{2}-n}=\frac{2}{5} \\
60=2 n^{2}-2 n
\end{gathered}
$$

Thus

$$
0=2 n^{2}-2 n-60
$$

Skill	Questions	Score	Available Marks
Completing a probability tree diagram for dependent events.	1	2	
Calculate the probability of dependent events.	$2,3,4$		10
Problem solving and reasoning with dependent events.	5	$\mathbf{3}$	
	Total Marks		15

